skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Komogortsev, Oleg V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Typically, the position error of an eye-tracking device is measured as the distance of the eye-position from the target position in two-dimensional space (angular offset).  Accuracy is the mean angular offset.  The mean is a highly interpretable measure of central tendency if the underlying error distribution is unimodal and normal. However, in the context of an underlying multimodal distribution, the mean is less interpretable. We will present evidence that the majority of such distributions are multimodal.  Only 14.7% of fixation angular offset distributions  were  unimodal, and  of  these,  only  11.5%  were normally distributed.  (Of the entire dataset, 1.7% were unimodal and normal.)  This multimodality is true even if there is only a single, continuous tracking fixation segment per trial. We present several approaches to measure accuracy in the face of multimodality. We also address the role of fixation drift in partially explaining multimodality. 
    more » « less
  2. null (Ed.)
    It is generally accepted that relatively more permanent (i.e., more temporally persistent) traits are more valuable for biometric performance than less permanent traits. Although this finding is intuitive, there is no current work identifying exactly where in the biometric analysis temporal persistence makes a difference. In this paper, we answer this question. In a recent report, we introduced the intraclass correlation coefficient (ICC) as an index of temporal persistence for such features. Here, we present a novel approach using synthetic features to study which aspects of a biometric identification study are influenced by the temporal persistence of features. What we show is that using more temporally persistent features produces effects on the similarity score distributions that explain why this quality is so key to biometric performance. The results identified with the synthetic data are largely reinforced by an analysis of two datasets, one based on eye-movements and one based on gait. There was one difference between the synthetic and real data, related to the intercorrelation of features in real data. Removing these intercorrelations for real datasets with a decorrelation step produced results which were very similar to that obtained with synthetic features. 
    more » « less
  3. null (Ed.)
    Texture-based features computed on eye movement scan paths have recently been proposed for eye movement biometric applications. Feature vectors were extracted within this prior work by computing the mean and standard deviation of the resulting images obtained through application of a Gabor filter bank. This paper describes preliminary work exploring an alternative technique for extracting features from Gabor filtered scan path images. Namely, features vectors are obtained by downsampling the filtered images, thereby retaining structured spatial information within the feature vector. The proposed technique is validated at various downsampling scales for data collected from 94 subjects during free-viewing of a fantasy movie trailer. The approach is demonstrated to reduce EER versus the previously proposed statistical summary technique by 11.7% for the best evaluated downsampling parameter. 
    more » « less
  4. Photosensor oculography (PSOG) is a promising solution for reducing the computational requirements of eye tracking sensors in wireless virtual and augmented reality platforms. This paper proposes a novel machine learning-based solution for addressing the known performance degradation of PSOG devices in the presence of sensor shifts. Namely, we introduce a convolutional neural network model capable of providing shift-robust end-to-end gaze estimates from the PSOG array output. Moreover, we propose a transfer-learning strategy for reducing model training time. Using a simulated workflow with improved realism, we show that the proposed convolutional model offers improved accuracy over a previously considered multilayer perceptron approach. In addition, we demonstrate that the transfer of initialization weights from pre-trained models can substantially reduce training time for new users. In the end, we provide the discussion regarding the design trade-offs between accuracy, training time, and power consumption among the considered models. 
    more » « less